Identification of Riparian Plants Potential for Remediation and Water Quality Monitoring in The Downstream of Brantas River, East Java


  • Rony Irawanto Research Center of Ecology and Ethnobiology, Badan Riset dan Inovasi Nasional
  • Alfin Fatwa M Afifudin Department of Biology, Faculty of Science and Technology, Universitas Airlangga



Brantas River, conservation, phytoremediation, plant, riparian


Indonesia is home to an extraordinarily diverse range of plant and animal species, particularly in vital wetland, riparian, and aquatic areas crucial for watershed ecosystems. For example, the Brantas River system, located in East Java, plays a pivotal role in sustaining regional biodiversity. However, the river system is currently under threat from degradation and escalating river pollution. This underscores the pressing need to document and inventory its plant diversity. This study specifically focuses on the downstream area of the Brantas River, aiming to identify riparian seed-plants and assess their potential in remediating pollutants. Additionally, the research evaluates water quality in the downstream region. Conducted from November 2020 to February 2021 using an observational method with a descriptive explorative approach, the study
identified 14 seed-bearing plant species in the downstream area. Although certain water quality parameters met established standards, elevated levels of heavy metals such as lead, copper, and chromium exceeded permissible limits. Notably, 12 out of the 14 identified plant species demonstrated the ability to absorb heavy metals from the environment.


Abotalib, A. Z., Abdelhady, A. A., Heggy, E., Salem, S. G., Ismail, E., Ali, A., & Khalil, M. M. (2023). Irreversible and LargeScale Heavy Metal Pollution Arising From Increased Damming and Untreated Water Reuse in the Nile Delta. Earths Future, 11(3), e2022EF002987.

Adesuyi, A. A., Njoku, K. L., & Akinola, M. O. (2015). Assessment of Heavy Metals Pollution in Soils and Vegetation around Selected Industries in Lagos State, Nigeria. Journal of Geoscience and Environment Protection, 03(07), 1119. GEP.2015.37002

Afifudin, A. F. M., & Irawanto, R. (2022). Translocation Mechanism of Lanceleaf Arrowhead (Sagittaria lancifolia) on Copper (Cu) and Phytoremediation Ability. EnvironmentAsia, 15(3), 8494.

Afifudin, A. F. M., & Irawanto, R. (2023). Exploring Mangrove Potential for Heavy Metal Phytoremediation Along Coastal Zones : A Study of Sempu Island Nature Reserve Sempu Island as a Nature Reserve. Journal of Marine and Coastal Research, 12(September). v12i3.48330

Alcantara-Martinez, N., Guizar, S., RiveraCabrera, F., Anicacio-Acevedo, B. E., Buendia-Gonzalez, L., & VolkeSepulveda, T. (2016). Tolerance, arsenic uptake, and oxidative stress in Acacia farnesiana under arsenate-stress. International Journal of Phytoremediation, 18(7), 671678. 0/15226514.2015.1118432

Atabaki, N., Shaharuddin, N. A., Ahmad, S. A., Nulit, R., & Abiri, R. (2020). Assessment of Water Mimosa (Neptunia oleracea Lour.) Morphological, Physiological, and Removal Efficiency for Phytoremediation of ArsenicPolluted Water. Plants 2020, Vol. 9, Page 1500, 9(11), 1500. org/10.3390/PLANTS9111500

Ayyappan, D., Sathiyaraj, G., & Ravindran, K. C. (2016). Phytoextraction of heavy metals by Sesuvium portulacastrum l. a salt marsh halophyte from tannery effluent. International Journal of Phytoremediation, 18(5), 453459. 15.1109606

Brito, P., Ferreira, R. A., Martins-Dias, S., Azevedo, O. M., Caetano, M., & Caador, I. (2021). Cerium uptake, translocation and toxicity in the salt marsh halophyte Halimione portulacoides (L.), Aellen. Chemosphere, 266, 128973. chemosphere.2020.128973

Chandra, R., Kumar, V., Tripathi, S., & Sharma, P. (2018). Heavy metal p h y t o e x t r a c t i o n p o t e n t i a l o f native weeds and grasses from endocrine-disrupting chemicals rich complex distillery sludge and their histological observations during in-situ phytoremediation. Ecological Engineering, 111, 143156. org/10.1016/J.ECOLENG.2017.12.007

Fang, Z., Wang, Q., Zhang, C., Li, S., Li, S., Wang, X., Cheng, X., He, Z., & Li, Z. (2022). Effects of Cr6+ stress on chromium chemical speciation distribution and bacterial community structure in the Coix lacryma-jobi L. constructed wetlands. Environmental Pollutants and Bioavailability, 34(1), 433445. 26395940.2022.2128427

Handayani, C. O., Zuamah, H., & Sukarjo. (2023). Assessment of Pollution and Sources of Metals in the Brantas River in East Java, Indonesia. Springer Proceedings in Physics, 290, 151160. 9768-6_15/COVER

Hardestyariki, D., & Fitria, S. (2023). Potential of Neptunia oleracea L. as a Phytoremediation Agent for Petroleum Liquid Waste. Journal of Ecological Engineering, 24(5), 8894. org/10.12911/22998993/161296

He, L., Hu, W., Wang, X., Liu, Y., Jiang, Y., Meng, Y., Xiao, Q., Guo, X., Zhou, Y., Bi, Y., & Lu, Y. (2020). Analysis of Heavy Metal Contamination of Agricultural Soils and Related Effect on Population HealthA Case Study for East River Basin in China. International Journal of Environmental Research and Public Health, 17(6). IJERPH17061996

Hidayati, N. (2020). Tanaman Akumulator Merkuri (Hg), Timbal (Pb), dan Kadmium (Cd) untuk Fitoremediasi (Issue Cd).

Irawanto, R., Sarwoko Mangkoedihardjo, dan, & Raya Purwodadi, K. (2015). Phytoforensic of Heavy Metals (Pb and Cd) in Aquatic Plants (Acanthus ilicifolius and Coix lacryma-jobi). Jurnal Purifikasi, 15(1), 5366. org/10.12962/J25983806.V15.I1.25

Jameer Ahammad, S., Sumithra, S., & Senthilkumar, P. (2018). Mercury uptake and translocation by indigenous plants. Rasayan Journal of Chemistry, 11(1), 112. RJC.2018.1111726

Jin, Y., Zhou, Q., Wang, X., Zhang, H., Yang, G., Lei, T., Mei, S., Yang, H., Liu, L., Yang, H., Lv, J., & Jiang, Y. (2022). Heavy Metals in the Mainstream Water of the Yangtze River Downstream: Distribution, Sources and Health Risk Assessment. International Journal of Environmental Research and Public Health, 19(10). IJERPH19106204

Kadim, M. K., & Risjani, Y. (2022). Biomarker for monitoring heavy metal pollution in aquatic environment: An overview toward molecular perspectives. Emerging Contaminants, 8, 195205. EMCON.2022.02.003

Kaewtubtim, P., Meeinkuirt, W., Seepom, S., & Pichtel, J. (2016). Heavy metal phytoremediation potential of plant species in a mangrove ecosystem in Pattani Bay, Thailand. Applied Ecology and Environmental Research, 14(1), 367382. AEER/1401_367382

Li, P., & Wu, J. (2019). Drinking Water Quality and Public Health. Exposure and Health, 11(2), 7379. S12403-019-00299-8/FIGURES/1

Luthansa, U. M., Titah, H. S., & Pratikno, H. (2021). The Ability of Mangrove Plant on Lead Phytoremediation at Wonorejo Estuary, Surabaya, Indonesia. Journal of Ecological Engineering, 22(6), 253268.

Madhav, S., Ahamad, A., Singh, A. K., Kushawaha, J., Chauhan, J. S., Sharma, S., & Singh, P. (2020). Water Pollutants: Sources and Impact on the Environment and Human Health. 4362. org/10.1007/978-981-15-0671-0_4

Maldonado-Magaa, A., Favela-Torres, E., Rivera-Cabrera, F., & Volke-Sepulveda, T. L. (2011). Lead bioaccumulation in Acacia farnesiana and its effect on lipid peroxidation and glutathione production. Plant and Soil, 339(1), 377389. S11104-010-0589-6

Mariyanto, M., Amir, M. F., Utama, W., Hamdan, A. M., Bijaksana, S., Pratama, A., Yunginger, R., & Sudarningsih, S. (2019). Heavy metal contents and magnetic properties of surface sediments in volcanic and tropical environment from Brantas River, Jawa Timur Province, Indonesia. Science of The Total Environment, 675, 632641. SCITOTENV.2019.04.244

Nedjimi, B. (2021). Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Applied Sciences 2021 3:3, 3(3), 119. 04301-4

Pandey, V. C. (2020). Phytoremediation Potential of Perennial Grasses. In Phytoremediation Potential of Perennial Grasses. c2018-0-02475-5

Prabakaran, K., Li, J., Anandkumar, A., Leng, Z., Zou, C. B., & Du, D. (2019). Managing environmental contamination through phytoremediation by invasive plants: A review. Ecological Engineering, 138, 2837. ECOLENG.2019.07.002

Rahman, M. S., Saha, N., Ahmed, A. S. S., Babu, S. M. O. F., Islam, A. R. M. T., Begum, B. A., Jolly, Y. N., Akhter, S., & Choudhury, T. R. (2021). Depthrelated dynamics of physicochemical characteristics and heavy metal accumulation in mangrove sediment and plant: Acanthus ilicifolius as a potential phytoextractor. Marine Pollution Bulletin, 173, 113160. MARPOLBUL.2021.113160

Roestamy, M., & Fulazzaky, M. A. (2021). A review of the water resources management for the Brantas River basin: challenges in the transition to an integrated water resources management. Environment, Development and Sustainability, 24(10), 1151411529. 01933-9/FIGURES/2

Rong, S., Wu, J., Liu, J., Li, Q., Ren, C., & Cao, X. (2023). Environmental Magnetic Characteristics and Heavy Metal Pollution Assessment of Sediments in the Lean River, China. Minerals, 13(2), 145. MIN13020145/S1

Roosmini, D., Septiono, M. A., Putri, N. E., Shabrina, H. M., Salami, I. R. S., & Ariesyady, H. D. (2018). IOP Conference Series: Earth and Environmental Science River water pollution condition in upper part of Brantas River and Bengawan Solo River. IOP Conf. Ser.: Earth Environ. Sci, 106, 12059. org/10.1088/1755-1315/106/1/012059

Rumanta, M. (2019). The potential of Rhizophora mucronata and Sonneratia caseolaris for phytoremediation of lead pollution in Muara Angke, North Jakarta, Indonesia. Biodiversitas, 20(8), 21512158.

Singh, S., & Fulzele, D. P. (2021). Phytoextraction of arsenic using a weed plant Calotropis procera from contaminated water and soil: growth and biochemical response. International Journal of Phytoremediation, 23(12), 13101318. 5226514.2021.1895717

Singh, S., Karwadiya, J., Srivastava, S., Patra, P. K., & Venugopalan, V. P. (2022). Potential of indigenous plant species for phytoremediation of arsenic contaminated water and soil. Ecological Engineering, 175, 106476. org/10.1016/J.ECOLENG.2021.106476

Sudarningsih, S., Pratama, A., Bijaksana, S., Fahruddin, F., Zanuddin, A., Salim, A., Abdillah, H., Rusnadi, M., & Mariyanto, M. (2023). Magnetic susceptibility and heavy metal contents in sediments of Riam Kiwa, Riam Kanan and Martapura rivers, Kalimantan Selatan province, Indonesia. Heliyon, 9(6), e16425. HELIYON.2023.E16425

Suresh Raj, P. R., & Mohan Viswanathan, P. (2023). Occurrence and distribution of geochemical elements in Miri estuary, NW Borneo: Evaluating for processes, sources and pollution status. Chemosphere, 316, 137838. CHEMOSPHERE.2023.137838

Syuhaida, A., Wahab, A., Norkhadijah, S., Ismail, S., Praveena, S. M., & Awang, S. (2014). Heavy Metals Uptake of Water Mimosa (Neptunia oleracea) and Its Safety for Human Consumption. Iranian Journal of Public Health, 43(Supple 3), 103111. php/ijph/article/view/4886

Thoppeng, P., Junpradit, C., Rongsayamanont, W., Duangmal, K., & Prapagdee, B. (2023). Cadmiumresistant Streptomyces stimulates phytoextraction potential of Crotalaria juncea L. in cadmium-polluted soil. International Journal of Phytoremediation, 25(10), 13181327. 1080/15226514.2022.2152424

Udiba, U. U., Antai, E. E., & Akpan, E. R. (2020). Assessment of lead (Pb) remediation potential of senna obtusifolia in Dareta Village, Zamfara, Nigeria. Journal of Health and Pollution, 10(25), 111. 10.25.200301/445353

United States Environmental Protection Agency. (2023). Metals | US EPA. metals

Vijaya Kumar, K. M., & Kumara, V. (2014). Species diversity of birds in mangroves of Kundapura, Udupi District, Karnataka, Southwest Coast of India. Journal of Forestry Research, 25(3), 661666. s11676-014-0450-5

Yap, C. K., & Al-Mutairi, K. A. (2022). Ecological-health risk assessments of heavy metals (Cu, pb, and zn) in aquatic sediments from the asean-5 emerging developing countries: A review and synthesis. Biology, 11(1). org/10.3390/BIOLOGY11010007/S1

Yunasfi, D., & Singh, K. P. (2019). The heavy metal of cuprum (Cu) and lead(Pb) content in Avicennia marina and Rhizophora mucranata The heavy metal of cuprum (Cu) and lead(Pb) content in Avicennia marina and Rhizophora mucranata. IOP Conference Series: Earth and Environmental Science, 374(1). 1315/374/1/012064




How to Cite

Irawanto, R., & Afifudin, A. F. M. (2024). Identification of Riparian Plants Potential for Remediation and Water Quality Monitoring in The Downstream of Brantas River, East Java. SCISCITATIO, 5(1), 47–57.