Prinsip Kerja Sensor Elektrokimia dalam Penentuan Chemical Oxygen Demand (COD): Review
DOI:
https://doi.org/10.21460/sciscitatio.2025.61.189Keywords:
chemical oxygen demand, sensor elektrokimia, degradasi fotokatalitik, oksidasi elektrokatalitikAbstract
Peningkatan kebutuhan sumber air akibat tingginya populasi masyarakat memerlukan perhatian
terhadap uji kualitas air. Chemical Oxygen Demand (COD) adalah indikator jumlah limbah organik di dalam
air. Penggunaan sensor elektrokimia dalam pengukuran COD memberikan keuntungan lebih, seperti
sensitivitas tinggi dan biaya murah. Pengukuran COD menggunakan sensor elektrokimia didasarkan pada
reaksi oksidasi elektrokimia senyawa organik melalui reaksi dengan radikal hidroksil (.OH) pada elektroda
kerja (WE). Terdapat 2 prinsip kerja yang digunakan dalam reaksi oksidasi limbah organik, yaitu degradasi
fotokatalitik dan oksidasi elektrokatalitik. Melalui degradasi fotokatalitik, limbah organik dioksidasi pada
permukaan material fotokatalitik di bawah pencahayaan (light illumination) yang telah menghasilkan radikal
hidroksil (.OH). Pada oksidasi elektrokatalitik menggunakan anoda (BDD, PbO2, dan Cu) yang mempunyai
kemampuan elektrokatalitik untuk melakukan proses reaksi oksidasi limbah organik.
References
Bandodkar, A. J. & Wang, J. (2014). Non-invasive wearable electrochemical sensors: a review. Trends in Biotechnology,32(7), 363-371.
Boyles, W. (1997). Chemical oxygen demand. Technical information series, Booklet,(9), 24.
Carchi, T., Lapo, B., Alvarado, J., Espinoza-Montero, P. J., Llorca, J. & Fernandez, L. (2019). A Nafion Film Cover to Enhance the Analytical Performance of the CuO/Cu Electrochemical Sensor for Determination of Chemical Oxygen Demand. Sensors, 19(3)
Cotchim, S. (2020). Development of Electrochemical Sensors for Clinical, Forensic Science and Pharmaceutical Analyses. Unpublished Thesis (Dissertation), Prince of Songkla University.
Demetillo, A. T., Japitana, M. V. & Taboada, E. B. (2019). A system for monitoring water quality in a large aquatic area using wireless sensor network technology. Sustainable Environment Research, 29(1), 12.
Dong, Z., Zhu, X., Tang, J., Liao, Y., Cheng, X., Tang, L. & Fang, L. (2024) . An integrated smartphone-based electrochemical detection system for highly sensitive and on-site detection of chemical oxygen demand by copper-cobalt bimetallic oxide-modified electrode. Microchimica Acta, 191(6), 343.
Duan, W., del Campo, F. J., Gich, M. & Fernandez-Sanchez, C. (2022a).In-field one-step measurement of dissolved chemical oxygen demand with an integrated screen-printed electrochemical sensor. Sensors and Actuators B: Chemical, 369, 132304.
Duan, W., Gunes, M., Baldi, A., Gich, M. & Fernandez-Sanchez, C. (2022b).Compact fluidic electrochemical sensor platform for on-line monitoring of chemical oxygen demand in urban wastewater.Chemical Engineering Journal, 449, 137837.
Elfeky, E. M. S., Shehata, M. R., Elbashar, Y. H., Barakat, M. H. & El Rouby, W. M. A. (2022). Developing the sensing features of copper electrodes as an environmental friendly detection tool for chemical oxygen demand. RSC Advances, 12(7), 4199-4208.
Fang, Z., Chen, D., Yan, F., Lu, J., Wang, Y. & Guan, X. (2021). A Novel Ni/ZnO/Cu Composite Electrode with High Sensitivity for Detection of Chemical Oxygen Demand. Surfaces and Interfaces,24, 101091.
Guan, L., Zhou, Y. & Yang, S. (2024).An improved prediction model for COD measurements using UV-Vis spectroscopy.RSC Advances, 14(1), 193-205.
Hao, N., Dai, Z., Xiong, M., Han, X., Zuo, Y., Qian, J. & Wang, K. (2021). Rapid Potentiometric Detection of Chemical Oxygen Demand Using a Portable Self-Powered Sensor Chip. Analytical Chemistry, 93(24), 8393-8398.
Huo, H.-W., Wu, X.-Q., Xie, J.-F., Li, D., Zhao, Q.-B. & Zheng, Y.-M. (2024). Rapid and Reliable Electrochemical Measurement of Chemical Oxygen Demand Using SnO2–Sb-Based Anodes. ACS ES&T Engineering, 4(6), 1507-1519
Jin, J., Wang, M., Hui, C., Sun, K. & Liu, B. (2024). Electrochemical determination of chemical oxygen demand using glucose standard at nickel(II) hydroxide modified electrode. International Journal of Electrochemical Science, 19(2), 100467.
Kanoun, O., Lazarevic-Pasti, T., Pasti, I., Nasraoui, S., Talbi, M., Brahem, A., Adiraju, A., Sheremet, E., Rodriguez, R. D., Ben Ali, M. & Al-Hamry, A. (2021). A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. Sensors, 21(12)
Lam, S.-M., Wong, S.-M., Sin, J.-C., Zeng, H., Li, H., Huang, L., Lin, H., Mohamed, A. R., Lim, J.-W. & Qin, Z. (2024). Bi-functional NiFe2O4/SrTiO3 S-scheme heterojunction for eminent performance photocatalytic treatment of sewage effluent and electrochemical hydrazine determination. Environmental Research,261, 119718.
Lambertz, S., Franke, M., Stelter, M. & Braeutigam, P. (2024). Determination of Chemical Oxygen Demand with electrochemical methods: A review. Chemical Engineering Journal Advances,18, 100615.
Latifah, D. S., Jeon, S. & Oh, I. (2023). Electrochemical Determination of Chemical Oxygen Demand Based on Boron-Doped Diamond Electrode. J. Electrochem. Sci. Technol, 14(3), 215-221.
Li, J., Luo, G., He, L., Xu, J. & Lyu, J. (2018). Analytical Approaches for Determining Chemical Oxygen Demand in Water Bodies: A Review. Critical Reviews in Analytical Chemistry, 48(1), 47-65.
Li, P., Yan, Y., Sun, Y., Chang, Q., Xie, Y. & Jiang, G. (2024). Highly sensitive electrochemical determination of chemical oxygen demand by carbon-capsulated CuOx derived from Cu foam supported Cu-MOF. Electroanalysis,36(4), e202300361.
Li, Q., Wu, S., Liu, Q., Chen, S. & Chen, F. (2024).Spectrophotometric determination of COD based on synergistic photocatalysis redox reaction using titanium dioxide nanoparticles and phosphomolybdic heteropoly acid. Talanta, 268, 125327.
Lin, J., Yin, J., Gao, W. & Jin, Q. (2023).Electrochemical Determination of Chemical Oxygen Demand (COD) in Surface Water Using a Microfabricated B o r o n - D o p e d D i a m o n d ( B D D ) Electrode by Chronoamperometry.Analytical Letters, 56(14), 2346-2358.
Martinez-Huitle, C. A. & Ferro, S. (2006).Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chemical Society Reviews, 35(12), 1324-1340.
Si, H., Pan, N., Zhang, X., Liao, J., Rumyantseva, M. N., Gaskov, A. M. & Lin, S. (2019). A real-time on-line photoelectrochemical sensor toward chemical oxygen demand determination based on field-effect transistor using an extended gate with 3D TiO2 nanotube arrays. Sensors and Actuators B: Chemical,289, 106-113.
Wang, H.-W., Bringans, C., Hickey, A. J. R., Windsor, J. A., Kilmartin, P. A. & Phillips, A. R. J. (2021).Cyclic Voltammetry in Biological Samples: A Systematic Review of Methods and Techniques Applicable to Clinical Settings. Signals, 2(1), 138-158,
Wang, L., Zhang, Y., Sun, X., Li, Y., Zhai, J. & Dong, S. (2023). A new FTO/TiO2/PbO2 electrode for eco-friendly electrochemical determination of chemical oxygen demand. Nano Research, 16(8), 11042-11047.
Wang, X., Wu, D., Yuan, D. & Wu, X. (2022). A nano-lead dioxide-composite electrochemical sensor for the determination of chemical oxygen demand. Journal of Environmental Chemical Engineering, 10(3), 107464.
Wahyudi, F., Saputera, W.H., Sasongko, D., & Devianto, H. (2023). Studi Pengaruh Konsentrasi Katalis ZnO untuk Degradasi Limbah Palm Oil Mill Effluent (POME) Menggunakan Teknologi Fotokatalitik. Jurnal Teknik: Media Pengembangan Ilmu dan Aplikasi Teknik, 22(2), 105-113
Westbroek, P. (2005). 2 - Electrochemical methods in Westbroek, P., Priniotakis, G. and Kiekens, P., eds. Analytical Electrochemistry in Textiles, Woodhead Publishing, 37-69.
Xie, S., Wu, H. & Yang, X. (2024). Microfluidic Electrochemical Sensor for Online Detection of Chemical Oxygen Demand Based on AuNPs/Au Electrodes. IEEE Sensors Journal, 24(23), 38584-38588.
Yin, J., Zhang, Z., Zhang, X., Mai, Y., Luan, A., Xu, B. & Jin, Q. (2021). A batch microfabrication of a microfluidic electrochemical sensor for rapid chemical oxygen demand measurement. Analyst, 146(6), 1956-1964.
Zhang, L., Dang, X. & Zhao, H. (2024).Homojunction-Incorporated Oxygen Vacancy Functionalized Spherical TiO2 Nanocrystals for the Electrochemical Detection of Chemical Oxygen Demand.Inorganic Chemistry, 63(44), 21345-21353.
Zhang, Y., Zhang, H., Sun, X., Zhao, P., Zhai, J. & Dong, S. (2025). Self-powered sensor based on a TiO2 NTAs/FeN5 SACs photocatalytic fuel cell for sensing chemical oxygen demand. Sensors and Actuators B: Chemical, 426, 137146
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 THE AUTHOR(S)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.