Deteksi Gen Resisten Kloramfenikol (cat) pada Isolat Klinik Pseudomonas aeruginosa dan Escherichia coli dengan Metode Polymerase Chain Reaction

Authors

  • Didik Wahyudi Program Studi DIII Teknologi Laboratorium Medis, Sekolah Tinggi Ilmu Kesehatan Nasional
  • Yusianti Silviani Program Studi DIII Teknologi Laboratorium Medis, Sekolah Tinggi Ilmu Kesehatan Nasional
  • Ardy Prian Nirwana Program Studi DIII Teknologi Laboratorium Medis, Sekolah Tinggi Ilmu Kesehatan Nasional
  • Dewi Saroh Program Studi DIII Teknologi Laboratorium Medis, Sekolah Tinggi Ilmu Kesehatan Nasional

DOI:

https://doi.org/10.21460/sciscitatio.2024.51.161

Keywords:

gen cat, Pseudomonas aeruginosa, Escherichia coli, PCR

Abstract

Pseudomonas aeruginosa dan Escherichia coli adalah patogen oportunistik dari kelompok bakteri gram negatif yang menyebabkan infeksi pada tubuh manusia. Kedua spesies tersebut sering ditemukan telah resisten terhadap beberapa antibiotik. Kloramfenikol merupakan antibiotik yang sering digunakan untuk mengatasi infeksi bakteri tersebut, salah satu gen pengendali resistensi kloramfenikol adalah gen cat. Penelitian ini bertujuan untuk mendeteksi keberadaan gen resistensi kloramfenikol (cat) pada isolat klinik P. aeruginosa dan Escherichia coli. Bakteri diisolasi dari kasus infeksi di Rumah Sakit. Kemudian dilakukan identifikasi dengan metode uji biokimia, isolasi DNA, kemudian diamplifikasi dengan metode Polymerase Chain Reaction, dengan menggunakan dua pasang primer spesifik untuk kedua bakteri tersebut, dilanjutkan visualisasi hasil PCR dengan menggunakan elektroforesis. Hasil uji menunjukkan bahwa semua isolat P. aeruginosa terdeteksi adanya gen cat (100%), sedangkan E. coli terdeteksi gen cat sebesar 71,4%

References

Abed, Z., Ali, M. M., & Abed, S. N. (2023). Review Article Antibiotic Resistance in Scherichia Coli. Karbala Journal of Medicine 16(1): 26132620.

Alghamdi, S. (2022). Isolation and identification of the oral bacteria and their characterization for bacteriocin production in the oral cavity. Saudi Journal of Biological Sciences, [online] 29(1): 318323. Available from: doi.org/10.1016/j.sjbs.2021.08.096 [Accessed 29th November 2023].

Bale, B. I., Elebesunu, E. E., Manikavasagar, P., Agwuna, F. O., Ogunkola, I. O., Sow, A. U., & Lucero-Prisno, D. E. (2023). Antibiotic resistance in ocular bacterial infections: an integrative review of ophthalmic chloramphenicol. Tropical Medicine and Health, [online] 51(1). Available from: doi.org/10.1186/ s41182-023-00496-x[Accessed 12th December 2023].

Chiuman, L., Sherlyn, S., Aritonang, N. S., Rudy, R., & Suhartomi, S. (2023). In Vitro Study of Antibacterial Activity of Snake Fruit Extract against Extended Spectrum Beta Lactamase (ESBL) Escherichia coli. Jurnal Aisyah : Jurnal Ilmu Kesehatan, [online] 8(2): 715720. Available from: doi.org/10.30604/ jika.v8i2.1962 [Accessed 4th December 2023].

Cynthia, E., Sitepu, R., & Destianita, C. (2022). Review Jurnal Kajian Resistensi Antibiotik Golongan Aminoglikosida D a n G o l o n g a n T e t r a s i k l i n . SAINSBERTEK Jurnal Ilmiah Sains & Teknologi, 3(1):68.

Das, S., Kabir, A., Chouhan, C. S., Shahid, M. A. H., Habib, T., Rahman, M., & Nazir, K. N. H. (2023). Domestic cats are potential reservoirs of multidrugresistant human enteropathogenic E. coli strains in Bangladesh. Saudi Journal of Biological Sciences, [online] 30(10):103-1142. Available from: doi.org/10.1016/j.sjbs.2023.103786 [Accessed 14th November 2023].

Farizqi, M. T. I., Effendi, M. H., Adikara, R. T. S., Yudaniayanti, I. S., Putra, G. D. S., Khairullah, A. R., Kurniawan, S. C., Silaen, O. S. M., Ramadhani, S., Millannia, S. K., Kaben, S. E., & Waruwu, Y. K. K. (2023). Detection of extended-spectrum -lactamase-producing Escherichia coli genes isolated from cat rectal swabs at Surabaya Veterinary Hospital, Indonesia. Veterinary World, [online] 16(9):19171925. Available from: doi. org/10.14202/vetworld.2023.1917-1925 [Accessed 29th November 2023].

Febler, A. T., Scholtzek, A. D., Schug, A. R., Kohn, B., Weingart, C., Hanke, D., Schink, A. K., Bethe, A., Lbke-Becker, A., & Schwarz, S. (2022). Antimicrobial and Biocide Resistance among Canine and Feline Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii Isolates from Diagnostic Submissions. Antibiotics, [online] 11(2):125. Available froms: doi.org/10.3390/antibiotics11020152 [Accessed 24th November 2023].

Karungamye, P., Rugaika, A., Mtei, K., & Machunda, R. (2023). Antibiotic Resistance Patterns of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa Isolated from Hospital Wastewater. Applied Microbiology, [online] 3(3):867882. Available from: doi.org/10.3390/ applmicrobiol3030060 [Accessed 21th November 2023].

Leong, S. S., Lihan, S., & Toh, S. C. (2022). Prevalence of chloramphenicol-resistant gene in Escherichia coli from water sources in aquaculture farms and rivers of Kuching, Northwestern Borneo. Fisheries and Aquatic Sciences, [online] 25(4):202213. Available from: doi.org/10.47853/FAS.2022.e19 [Accessed 5th December 2023].

Milanda, T., Dewi, L., & Kusuma, S. (2014). Detection of Chloramphenicol Resistance Genes (cat) in Clinical Isolates of Pseudomonas aeruginosa with Polymerase Chain Reaction Method. Indonesian Journal of Clinical Pharmacy, [online] 3(4):141150. Available from: doi.org/10.15416/ijcp.2014.3.4.141 [Accessed 22th November 2023].

Novelni, R., Sari, T. M., & Andila, F. (2023). Pola Bakteri dan Kepekaannya Terhadap Antibiotik pada Hasil Kultur Pasien di Intensive Care Unit RSUP Dr. M. Djamil Padang Tahun 2018. Jurnal Penelitian Farmasi Indonesia, [online] 12(1):5359. Available from: doi.org/10.51887/jpfi. v12i1.1758 [Accessed 18th November 2023].

Poirel, L., De la Rosa, J. M. O., Sadek, M., & Nordmann, P. (2022). Impact of Acquired Broad-Spectrum B-lactamases on Susceptibility to Cefiderocol and Newly Developed bLactam/ B-Lactamase Inhibitor Combinations in Escherichia coli and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, [online] 66(4):76- 87. Available from: doi.org/10.1128/ aac.00039-22 [Accessed 19th November 2023].

Ridyard, K. E., Elsawy, M., Mattrasingh, D., Klein, D., Strehmel, J., Beaulieu, C., Wong, A., & Overhage, J. (2023). Synergy between Human Peptide LL37 and Polymyxin B against Planktonic and Biofilm Cells of Escherichia coli and Pseudomonas aeruginosa. Antibiotics, [online] 12(2):97-109. Available from: doi.org/10.3390/antibiotics12020389 [Accessed 20th November 2023].

Rotinsulu, D. A., Afiff, U., & Septiriyanti, D. (2022). Resistansi Escherichia coli asal feses sapi di wilayah Bogor terhadap antimikrob. ARSHI Veterinary Letters, 6(4):7576. Available from: doi. org/10.29244/avl.6.4.75-76 [Accessed 21th November 2023].

Seftiwan Pratami Djasfar, & Pradika, Y. (2023). Identifikasi Bakteri Penyebab Infeksi Nosokomial (Pseudomonas aeruginosa) pada Lantai Intensive Care Unit (ICU). Jurnal Medical Laboratory, [online] 2(1):919. Available from: doi.org/10.57213/medlab.v2i1.135 [Accessed 26th November 2023].

Shams, E., Nateghi, B., Eshaghiyan, A., & Behshood, P. (2019). TEM Gene Detection in Clinical Pseudomonas aeruginosa and Escherichia coli Samples. Research in Molecular Medicine, [online] 7(1):4351. Available from: doi. org/10.18502/rmm.v7i1.5258 [Accessed 16th November 2023].

Sserwadda, I., Kidenya, B. R., Kanyerezi, S., Akaro, I. L., Mkinze, B., Mshana, S. E., Hashim, S. O., Isoe, E., Seni, J., Joloba, M. L., & Mboowa, G. (2023). Unraveling virulence determinants in extendedspectrum beta-lactamase-producing Escherichia coli from East Africa using whole-genome sequencing. BMC Infectious Diseases, [online] 23(1):110. Available from: doi.org/10.1186/ s12879-023-08579-0 [Accessed 13th October 2023].

Tambat, R., Mahey, N., Chandal, N., Verma, D. K., Jangra, M., Thakur, K. G., & Nandanwar, H. (2022). A MicrobeDerived Efflux Pump Inhibitor of the Resistance-Nodulation-Cell Division Protein Restores Antibiotic Susceptibility in Escherichia coli and Pseudomonas aeruginosa. ACS Infectious Diseases, [online] 8(2):255270. Available from: doi.org/10.1021/ acsinfecdis.1c00281 [Accessed 13th October 2023].

Taufik, F. F. (2022). EkspresiI mRNA Gen TGF-, MCP-1 dan Soluble Protein TGF-, MCP-1 pada Mencit yang Diinduksi Klebsiela pneumoniae Setelah Pemberian Propolis [disertasi] Universitas Hasanudin, Makassar, Indonesia. Usnaini, R. (2017). Identifikasi Escherichia coli & Pseudomonas aeruginosa pasa urin penderita infeksi saluran kemih di RSUD Dr. Moewardi Surakarta [thesis] Universitas Setiabudi, Surakarta, Indonesia.

Wahyudi, D., Aman, A. T., Handayani, N. S. N., & Soetarto, E. S. (2019). Differences among clinical isolates of Pseudomonas aeruginosa in their capability of forming biofilms and their susceptibility to antibiotics. Biodiversitas, [online] 20(5):14501456. Available from: doi.org/10.13057/biodiv/d200538 [Accessed 12th November 2023].

Wibisono, B., Triani, V. M., Amanah, A., Jati, G., Imunologi, D., Tropis, P., Kedokteran, F., Swadaya, U., & Anatomi, D. (2022). Uji Sensitivitas Antibiotik Terhadap Bakteri Patogen Pada Pasien Ulkus Diabetikum Di Rsud Waled Cirebon. InaBHS (Indonesian Journal of Biomedicine and Health Science), [online] 1(1):97-108. Available from: InaBHS/article/view/7308 [Accessed 15th November 2023].

Wira, I. G. A. A., Premandari, S., Abadi, M. F., & Arwidiana, D. P. (2023). Antibiotik pada Kultur Darah Bacteria Caused Bacteremia and Antibiotics Resistance Pattern in Blood. Jurnal Insan Cendikia, [online] 10(3):189-200. Available from: doi/10.35874/jic.v10i3.1239 [Accessed 5th November 2023].

Yamamoto, K., Yamamoto, N., Ayukawa, S., Yasutake, Y., Ishiya, K., & Nakashima, N. (2022). Scaffold size-dependent effect on the enhanced uptake of antibiotics and other compounds by Escherichia coli and Pseudomonas aeruginosa. Scientific Reports, [online] 12(1):112. Available: doi.org/10.1038/s41598-022-09635-6 [Accessed 18th November 2023].

Yan, K. C., Patenall, B. L., Gardiner, J. E., Heylen, R. A., Thet, N., He, X. P., Sedgwick, A. C., James, T. D., & Jenkins, A. T. A. (2022). TCF-based fluorescent probe for monitoring superoxide anion produced in bacteria under chloramphenicol- and heat-induced stress. Chemical Communications, [online] 58(94):1310313106. Available from: doi.org/10.1039/d2cc04662h [Accessed 15th November 2023].

Downloads

Published

22-02-2024

How to Cite

Wahyudi, D., Silviani, Y., Nirwana, A. P., & Saroh, D. (2024). Deteksi Gen Resisten Kloramfenikol (cat) pada Isolat Klinik Pseudomonas aeruginosa dan Escherichia coli dengan Metode Polymerase Chain Reaction. SCISCITATIO, 5(1), 10–19. https://doi.org/10.21460/sciscitatio.2024.51.161